https://doi.org/10.1140/epjc/s10052-024-13020-0
Regular Article - Experimental Physics
Searches for new physics below twice the electron mass with GERDA
1
INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy
2
INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi, Italy
3
INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila, L’Aquila, Italy
4
INFN Laboratori Nazionali del Sud, Catania, Italy
5
Institute of Physics, Jagiellonian University, Cracow, Poland
6
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
7
Joint Institute for Nuclear Research, Dubna, Russia
8
European Commission, JRC-Geel, Geel, Belgium
9
Max-Planck-Institut für Kernphysik, Heidelberg, Germany
10
Department of Physics and Astronomy, University College London, London, UK
11
INFN Milano Bicocca, Milan, Italy
12
Dipartimento di Fisica, Università degli Studi di Milano and INFN Milano, Milan, Italy
13
Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
14
Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow, Russia
15
National Research Centre “Kurchatov Institute”, Moscow, Russia
16
Max-Planck-Institut für Physik, Munich, Germany
17
Physik Department, Technische Universität München, Munich, Germany
18
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padua, Italy
19
INFN Padova, Padua, Italy
20
Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
21
Physik-Institut, Universität Zürich, Zürich, Switzerland
22
NRNU MEPhI, Moscow, Russia
23
Duke University, Durham, NC, USA
24
Moscow Inst. of Physics and Technology, Dolgoprudny, Russia
25
Semilab Zrt, Budapest, Hungary
26
Dubna State University, Dubna, Russia
27
Nuclear Science Division, Berkeley, USA
28
Max-Planck-Institut für Kernphysik, Heidelberg, Germany
Received:
26
March
2024
Accepted:
11
June
2024
Published online:
18
September
2024
A search for full energy depositions from bosonic keV-scale dark matter candidates of masses between 65 and 1021 keV has been performed with data collected during Phase II of the GERmanium Detector Array (Gerda) experiment. Our analysis includes direct dark matter absorption as well as dark Compton scattering. With a total exposure of 105.5 kg years, no evidence for a signal above the background has been observed. The resulting exclusion limits deduced with either Bayesian or Frequentist statistics are the most stringent direct constraints in the major part of the 140–1021 keV mass range. As an example, at a mass of 150 keV the dimensionless coupling of dark photons and axion-like particles to electrons has been constrained to and
at 90% credible interval (CI), respectively. Additionally, a search for peak-like signals from beyond the Standard Model decays of nucleons and electrons is performed. We find for the inclusive decay of a single neutron in
Ge a lower lifetime limit of
years and for a proton
years at 90% CI. For the electron decay
a lower limit of
years at 90% CI has been determined.
Deceased: I. Barabanov.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjc/s10052-024-13020-0.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.