https://doi.org/10.1140/epjc/s10052-024-13223-5
Regular Article – Theoretical Physics
Nonlinear Schwinger mechanism in QCD, and Fredholm alternatives theorem
1
School of Physics, Nanjing University, 210093, Nanjing, Jiangsu, China
2
Institute for Nonperturbative Physics, Nanjing University, 210093, Nanjing, Jiangsu, China
3
Department of Theoretical Physics and IFIC, University of Valencia and CSIC, 46100, Valencia, Spain
4
ExtreMe Matter Institute EMMI, GSI, Planckstrasse 1, 64291, Darmstadt, Germany
a
a.mauricio.ferreira@hotmail.com
Received:
9
July
2024
Accepted:
6
August
2024
Published online:
20
August
2024
We present a novel implementation of the Schwinger mechanism in QCD, which fixes uniquely the scale of the effective gluon mass scale and streamlines considerably the procedure of multiplicative renormalization. The key advantage of this method stems from the nonlinear nature of the dynamical equation that generates massless poles in the longitudinal sector of the three-gluon vertex. An exceptional feature of this approach is an extensive cancellation involving the components of the integral expression that determines the gluon mass scale; it is triggered once the Schwinger–Dyson equation of the pole-free part of the three-gluon vertex has been appropriately exploited. It turns out that this cancellation is driven by the so-called Fredholm alternatives theorem, which operates among the set of integral equations describing this system. Quite remarkably, in the linearized approximation this theorem enforces the exact masslessness of the gluon. Instead, the nonlinearity induced by the full treatment of the relevant kernel evades this theorem, allowing for the emergence of a nonvanishing mass scale. The numerical results obtained from the resulting equations are compatible with the lattice findings, and may be further refined through the inclusion of the remaining fundamental vertices of the theory.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.