https://doi.org/10.1140/epjc/s10052-024-12990-5
Regular Article - Theoretical Physics
Late time decay of scalar and Dirac fields around an asymptotically de Sitter black hole in the Euler–Heisenberg electrodynamics
Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
Received:
12
May
2024
Accepted:
4
June
2024
Published online:
25
June
2024
We compute the quasinormal modes of massive scalar and Dirac fields within the framework of asymptotically de Sitter black holes in Euler–Heisenberg non-linear electrodynamics. We pay particular attention to the regime where and M denote the masses of the field and the black hole, respectively, and represents the Planck mass, covering a range from primordial to large astrophysical black holes. Through time-domain integration, we demonstrate that, contrary to the asymptotically flat case, the quasinormal modes also dictate the asymptotic decay of fields. Employing the 6th order WKB formula, we derive a precise analytic approximation for quasinormal modes in the regime without resorting to expansion in terms of the inverse multipole number. This analytic expression takes on a concise form in the limit of linear electrodynamics, represented by the Reissner–Nordström black holes. Our numerical analysis indicates the stability of the fields under consideration against linear perturbations.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.