https://doi.org/10.1140/epjc/s10052-024-12930-3
Regular Article – Theoretical Physics
Massive propagating modes of torsion
1
Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Strasse 1, 60438, Frankfurt, Germany
2
Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438, Frankfurt, Germany
Received:
22
December
2023
Accepted:
19
May
2024
Published online:
17
June
2024
The dynamics of the torsion field is analyzed in the framework of the Covariant Canonical Gauge Theory of Gravity (CCGG), a De Donder–Weyl Hamiltonian formulation of gauge gravity. The action is quadratic in both, the torsion and the Riemann–Cartan tensor. Since the latter adds the derivative of torsion to the equations of motion, torsion is no longer identical to spin density, as in the Einstein–Cartan theory, but an additional propagating degree of freedom. As torsion turns out to be totally anti-symmetric, it can be parametrised via a single axial vector. It is shown in this paper that, in the weak torsion limit, the axial vector obeys a wave equation with an effective mass term which is partially dependent on the scalar curvature. The source of torsion is thereby given by the fermion axial current which is the net fermionic spin density of the system. Possible measurable effects and approaches to experimental analysis are addressed. For example, neutron star mergers could act as a dipoles or quadrupoles for torsional radiation, and an analysis of radiation of pulsars could lead to a detection of torsion wave background radiation.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.