https://doi.org/10.1140/epjc/s10052-024-12868-6
Regular Article - Experimental Physics
Decorrelation using optimal transport
DPNC, University of Geneva Faculty of Science, Geneva, Switzerland
Received:
2
October
2023
Accepted:
29
April
2024
Published online:
6
June
2024
Being able to decorrelate a feature space from protected attributes is an area of active research and study in ethics, fairness, and also natural sciences. We introduce a novel decorrelation method using Convex Neural Optimal Transport Solvers (Cnots) that is able to decorrelate a continuous feature space against protected attributes with optimal transport. We demonstrate how well it performs in the context of jet classification in high energy physics, where classifier scores are desired to be decorrelated from the mass of a jet. The decorrelation achieved in binary classification approaches the levels achieved by the state-of-the-art using conditional normalising flows. When moving to multiclass outputs the optimal transport approach performs significantly better than the state-of-the-art, suggesting substantial gains at decorrelating multidimensional feature spaces.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.