https://doi.org/10.1140/epjc/s10052-024-12820-8
Regular Article - Theoretical Physics
The Dirac equation as a linear tensor equation for one component
LTASolid Inc., 10616 Meadowglen Ln 2708, 77042, Houston, TX, USA
Received:
17
March
2024
Accepted:
14
April
2024
Published online:
13
May
2024
The Dirac equation is one of the most fundamental equations of modern physics. It is a spinor equation, but some tensor equivalents of the equation were proposed previously. Those equivalents were either nonlinear or involved several components of the Dirac field. On the other hand, the author showed previously that the Dirac equation in electromagnetic field is equivalent to a fourth-order equation for one component of the Dirac spinor. The equivalency is used in this work to derive a linear tensor equivalent of the Dirac equation for just one component. This surprising result can be used in applications of the Dirac equation, for example, in general relativity or for lattice approximation of the Dirac field, and can improve our understanding of the Dirac equation.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjc/s10052-024-12820-8.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.