https://doi.org/10.1140/epjc/s10052-024-12809-3
Regular Article - Theoretical Physics
Bogomol’nyi-like equations in gravity theories
Research Center for Quantum Physics, National Research and Innovation of Republic of Indonesia (BRIN), Komplek PUSPIPTEK, Serpong, 15310, Tangerang Selatan, Indonesia
Received:
20
December
2023
Accepted:
14
April
2024
Published online:
3
May
2024
Using the Bogomol’nyi–Prasad–Sommerfield Lagrangian method, we show that gravity theory coupled to matter in various dimensions may possess Bogomol’nyi-like equations, which are first-order differential equations, satisfying the Einstein equations and the Euler–Lagrange equations of classical fields (U(1) gauge and scalar fields). In particular we consider static and spherically symmetric solutions by taking proper ansatzes and then we find an effective Lagrangian density that can reproduce the Einstein equations and the Euler–Lagrange equations of the classical fields. We consider the BPS Lagrangian density to be linear function of first-order derivative of all the fields. From these two Lagrangian desities we are able to obtain the Bogomol’nyi-like equations whose some of solutions are well-known such as Schwarzschild, Reissner–Nordström, Tangherlini black holes, and the recent black holes with scalar hair in three dimensions (Phys. Rev. D 107, 124047). Using these Bogomol’nyi-like equations, we are also able to find new solutions for scalar hair black holes in three and four dimensional spacetime. Furthermore we show that the Bogomol’nyi–Prasad–Sommerfield Lagrangian method can provide a simple alternative proof of black holes uniqueness theorems in any dimension.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.