https://doi.org/10.1140/epjc/s10052-024-12710-z
Regular Article - Theoretical Physics
Topological dyonic black holes of massive gravity with generalized quasitopological electromagnetism
1
Department of Sciences and Humanities, National University of Computer and Emerging Sciences, 25000, Peshawar, Pakistan
2
Physics Department, Eastern Mediterranean University, North Cyprus via Mersin 10, 99628, Famagusta, Turkey
Received:
21
September
2023
Accepted:
22
March
2024
Published online:
9
April
2024
In this paper we investigate new dyonic black holes of massive gravity sourced by generalized quasitopological electromagnetism in arbitrary dimensions. We begin by deriving the exact solution to the field equations defining these black holes and look at how graviton’s mass, dimensionality parameter, and quasitopological electromagnetic field affect the horizon structure of anti-de Sitter dyonic black holes. We also explore the asymptotic behaviour of the curvature invariants at both the origin and infinity to analyze the geometric structure of the resultant black holes. We also compute the conserved and thermodynamic quantities of these dyonic black holes with the help of established techniques and known formulas. After investigating the relevancy of first law, we look at how various parameters influence the local thermodynamic stability of resultant black hole solution. We also examine how thermal fluctuations affect the local stability of dyonic black holes in massive gravity. Finally, we study the shadow cast of the black hole.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.