https://doi.org/10.1140/epjc/s10052-024-12666-0
Regular Article - Theoretical Physics
Testing beyond-Kerr spacetimes with GWTC-3
1
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, 12227-010, São José dos Campos, SP, Brazil
2
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
Received:
30
October
2023
Accepted:
11
March
2024
Published online:
22
March
2024
The Kerr spacetime is a fundamental solution of general relativity (GR), describing the gravitational field around a rotating, uncharged black hole (BH). Kerr spacetime has been crucial in modern astrophysics and it serves as a foundation for the study of gravitational waves (GWs). Possible deviations in Kerr geometry may indicate deviations from GR predictions. In this work, we consider the Johannsen–Psaltis metric, which is a beyond-Kerr metric characterized by a single free parameter, and then we probe this theory framework using several GWs observations from the third Gravitational-wave Transient Catalog (GWTC-3). We find that, for most of the events analyzed, there are no significant deviations from the null hypothesis, i.e. the Kerr metric. Our main findings demonstrate alignment and certain enhancements when compared to previous estimates documented in the literature.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.