https://doi.org/10.1140/epjc/s10052-023-11982-1
Regular Article - Theoretical Physics
Leveraging on-shell interference to search for FCNCs of the top quark and the Z boson
1
Fakultät für Physik, TU Dortmund, 44221, Dortmund, Germany
2
III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
3
Fermilab Accelerator Laboratory, Batavia, IL, USA
e
emmanuel.stamou@tu-dortmund.de
Received:
7
July
2023
Accepted:
25
August
2023
Published online:
27
September
2023
Flavour-changing-neutral currents (FCNCs) involving the top quark are highly suppressed within the Standard Model (SM). Hence, any signal in current or planned future collider experiments would constitute a clear manifestation of physics beyond the SM. We propose a novel, interference-based strategy to search for top-quark FCNCs involving the Z boson that has the potential to complement traditional search strategies due to a more favourable luminosity scaling. The strategy leverages on-shell interference between the FCNC and SM decay of the top quark into hadronic final states. We estimate the feasibility of the most promising case of anomalous tZc couplings using Monte Carlo simulations and a simplified detector simulation. We consider the main background processes and discriminate the signal from the background with a deep neural network that is parametrised in the value of the anomalous tZc coupling. We present sensitivity projections for the HL-LHC and the FCC-hh. We find an expected 95% CL upper limit of for the HL-LHC. In general, we conclude that the interference-based approach has the potential to provide both competitive and complementary constraints to traditional multi-lepton searches and other strategies that have been proposed to search for tZc FCNCs.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.