https://doi.org/10.1140/epjc/s10052-023-11929-6
Regular Article - Theoretical Physics
Two-loop infrared renormalization with on-shell methods
1
Physik-Department, Technische Universität München, 85748, Garching, Germany
2
Bethe Center for Theoretical Physics, Universität Bonn, 53115, Bonn, Germany
3
Max Planck Institute for Physics, Föhringer Ring 6, 80805, Munich, Germany
Received:
26
May
2023
Accepted:
14
August
2023
Published online:
25
August
2023
Within the framework proposed by Caron-Huot and Wilhelm, we give a recipe for computing infrared anomalous dimensions purely on-shell, efficiently up to two loops in any massless theory. After introducing the general formalism and reviewing the one-loop recipe, we extract a practical formula that relates two-loop infrared anomalous dimensions to certain two- and three-particle phase space integrals with tree-level form factors of conserved operators. We finally provide several examples of the use of the two-loop formula and comment on some of its formal aspects, especially the cancellation of ‘one-loop squared’ spurious terms. The present version of the paper is augmented with a detailed treatment of the structure of infrared divergences in massless theories of scalars and fermions up to two loops. In the calculation we encounter divergent phase space integrals and show in detail how these cancel among each other as required by the finiteness of the anomalous dimension. As a non-trivial check of the method, we also perform the computation with a standard diagrammatic approach, finding perfect agreement.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.