https://doi.org/10.1140/epjc/s10052-023-11872-6
Regular Article - Theoretical Physics
A perturbative production of massive Z bosons and fermion–antifermion pairs from the vacuum in the de Sitter Universe
Faculty of Physics, West University of Timişoara, V. Parvan Avenue 4, 300223, Timişoara, Romania
Received:
18
August
2022
Accepted:
28
July
2023
Published online:
21
August
2023
In this paper we study the problem of neutral electro-weak interactions in a de Sitter geometry. We develop the formalism of reduction for the Proca field with the help of the solutions for the interacting fields and by using perturbative methods we obtain the definition of the transition amplitudes in the first order of perturbation theory. As an application to our formalism we study the generation of massive fermions and Z bosons from vacuum in the expanding de Sitter universe. Our results are the generalization to the curved geometry of the Weinberg–Salam electro-weak theory for the case of Z boson interaction with leptons. The probability is found to be a quantity that depends on the Hubble parameter and we prove that such perturbative processes are possible only for large expansion regime of the early Universe. The total probability and rate of transition are obtained for the case of large expansion and we use the dimensional regularization for extract finite results from the momenta integrals. In the Minkowski limit we obtain that the probability of particle generation from vacuum is vanishing recovering the well known result that forbids particle production in flat space-time due to the momentum-energy conservation.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.