https://doi.org/10.1140/epjc/s10052-023-11842-y
Regular Article - Theoretical Physics
Optical appearance of a thin-shell wormhole with a Hayward profile
Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, 530004, Nanning, People’s Republic of China
Received:
8
May
2023
Accepted:
16
July
2023
Published online:
25
July
2023
The optical properties of a thin-shell wormhole (TSW) with a Hayward profile is investigated. Adopting the ray-tracing method, we demonstrate that the TSW’s contralateral spacetime is capable of reflecting a significant portion of light back to the observer spacetime. We analyze the effective potential, light deflection, and azimuthal angle of the TSW and find that these quantities are affected by the mass ratio of the black holes (BHs). Specifically, if the mass of the contralateral spacetime BH is greater than that of the original spacetime BH, and the impact parameter satisfies the condition , the trajectory of the photon exhibits round-trip characteristics. Assuming the presence of a thin accretion disk surrounding the observing spacetime BH, our results indicate that the image formed by the TSW exhibits additional photon rings and a lensing band compared to an image produced by a BH alone.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.