https://doi.org/10.1140/epjc/s10052-023-11838-8
Regular Article - Theoretical Physics
Learning trivializing flows
1
IFIC (CSIC-UVEG), Edificio Institutos Investigación, Apt. 22085, 46071, Valencia, Spain
2
Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, EH9 3FD, Edinburgh, UK
Received:
19
April
2023
Accepted:
14
July
2023
Published online:
28
July
2023
The recent introduction of machine learning techniques, especially normalizing flows, for the sampling of lattice gauge theories has shed some hope on improving the sampling efficiency of the traditional hybrid Monte Carlo (HMC) algorithm. In this work we study a modified HMC algorithm that draws on the seminal work on trivializing flows by Lüscher. Autocorrelations are reduced by sampling from a simpler action that is related to the original action by an invertible mapping realised through Normalizing Flows models with a minimal set of training parameters. We test the algorithm in a theory in 2D where we observe reduced autocorrelation times compared with HMC, and demonstrate that the training can be done at small unphysical volumes and used in physical conditions. We also study the scaling of the algorithm towards the continuum limit under various assumptions on the network architecture.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.