https://doi.org/10.1140/epjc/s10052-023-11748-9
Regular Article - Theoretical Physics
Probing supermassive black hole binaries with orbital resonances of laser-ranged satellites
1
Center for Gravitational Wave Experiment, National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
2
Lanzhou Center of Theoretical Physics, Lanzhou University, 730000, Lanzhou, China
3
Taiji Laboratory for Gravitational Wave Universe (Beijing/Hangzhou), University of Chinese Academy of Sciences, 100049, Beijing, China
4
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310124, Hangzhou, China
Received:
21
February
2023
Accepted:
20
June
2023
Published online:
30
June
2023
Coalescing supermassive black hole binaries (SMBHBs) are the primary source candidates for low frequency gravitational wave (GW) detections, which could bring us deep insights into galaxy evolutions over cosmic time and violent processes of spacetime dynamics. Promising candidates had been found based on optical and X-ray observations, which claims for new and ready-to-use GW detection approaches before the operations of space-borne antennas. We show that, satellite laser ranging (SLR) missions could serve as probes of coalescing SMBHBs through the GW-induced resonant effects. Lasting and characteristic imprints caused by such resonances in the residual distances or accelerations from SLR measurements are studied, and the detection SNR is analyzed with both the current and future improved ranging precisions. Within redshift , the threshold SNR = 5 requires 1–2 years of accumulated data for the current precision and months of data for improved precision, which are workable for the data processing of SLR missions. Meanwhile, joint detections with multiple SLR missions could further improve the total SNR and the confidence level. Such a detection scheme could fulfill the requirement of a tentative SMBHB probe during the preparing stage of LISA and Taiji, and it requires no further investment to any new and advanced facilities. It is also worthwhile to look back and re-process the archived data from the past decades, in where resonant signals from SMBHBs might be hidden.
Qiong Deng: co-first author.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.