https://doi.org/10.1140/epjc/s10052-023-11724-3
Regular Article - Theoretical Physics
Going all the way in the search for WIMP dark matter at the muon collider through precision measurements
Università degli Studi and INFN Roma Tre, Via della Vasca, Navale 84, 00146, Rome, Italy
Received:
10
February
2023
Accepted:
17
June
2023
Published online:
30
June
2023
Dark Matter is a necessary ingredient for a complete theory of Nature, which has so far remained elusive in laboratory searches for new particles. Searches at current and future colliders are in principle a promising way to search for electroweak charged dark matter particles, but the sensitivity of experiments at the LHC and future pp colliders falls short to fully probe the whole mass range allowed for electroweak charged dark matter particles, which extends in principle up to the O(0.1) PeV. In this work we examine the effect of on-shell and off-shell propagation of electroweak charged thermal dark matter particles on integrated and differential rates of several Standard Model final states at the muon collider, considering candidates from weak 2-plet at the TeV scale up to 7-plet and 9-plet in the O(0.1) PeV ballpark. For fermionic WIMPs we find that all dark matter candidates with , corresponding to a thermal mass up to 14 TeV, can be probed at the high-energy muon collider for some center-of-mass energy at or below 14 TeV. For the
WIMPs our results show that higher energy muon colliders offer a route to conclusively probe both scalar and fermionic WIMPs off-shell production all the way up to the perturbativity bound for WIMP dark matter at O(0.1) PeV. Our results bring WIMPs over the whole allowed mass range in the realm of collider searches and motivate research and development for the realization of a high energy muon collider.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.