https://doi.org/10.1140/epjc/s10052-023-11664-y
Regular Article - Theoretical Physics
Suppression of Higgs mixing by “quantum Zeno effect”
Department of Physics, Tohoku University, 980-8578, Sendai, Miyagi, Japan
Received:
27
March
2023
Accepted:
28
May
2023
Published online:
12
June
2023
The Higgs portal interaction to a singlet sector of the standard model (SM) gauge group is widely-studied. In this paper, we show that a quantum effect is important if the Higgs field mixes with another singlet scalar field whose decay rate is larger than the mass difference between the two mass eigenstates. This effect may be interpreted as the “quantum Zeno effect” by defining the (would-be) decay process of the singlet scalar as the measurement. In either the quantum mechanics or the quantum field theory, we show that the resulting propagating mode is not the eigenstate of the mass matrix, but it is approximately the eigenstate of the interaction. As a consequence, the decoupling of the mixing effect happens at the infinity limit of the decay width of the exotic scalar even if the naïve mixing parameter is not small. With a finite decay width of the exotic scalar, we derive the effective mass of the propagating mode in the SM sector, its decay rate, and the couplings at the 1-loop level. It turns out that the mixed mass eigenstates can mimic the discovered 125 GeV Higgs boson. This fuzzy Higgs boson can be obtained in a simple perturbative renormalizable model when the mass difference is smaller than O(0.1)GeV (O(1) GeV, O(10)GeV) for O(1) (O(0.01), O(0.001)) mixing to be consistent with the 125 GeV SM Higgs boson. We argue the possible natural scenario for the tiny mass splitting and the possibility that the upper bound of the mass difference is larger for a strongly-coupled singlet sector. To probe the fuzzy Higgs boson scenario, it is difficult to directly produce the singlet sector particles. Nevertheless, the future Higgs factories may probe this scenario by precisely measuring the Higgs boson invisible decay rate and the deviation of the Higgs coupling. Applications of the mechanism are also mentioned.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.