https://doi.org/10.1140/epjc/s10052-023-11644-2
Regular Article - Theoretical Physics
Towards precise constraints in modified gravity: bounds on alternative coupling gravity using white dwarf mass-radius measurements
1
National Research and Innovation Agency, Jakarta, Indonesia
2
Departemen Fisika, FMIPA, Universitas Indonesia, 16424, Depok, Indonesia
Received:
10
March
2023
Accepted:
21
May
2023
Published online:
2
June
2023
Tests have to be performed to rule out proposals for gravity modification. We propose a new idea for constraining alternative theories of gravity using temperature-dependent white dwarf (WD) mass-radius (MR) observational data. We have shown that several alternatives to general relativity (GR), which modified GR only within matter, might be reduced to the well-known Poisson equation similar to that of Eddington-inspired Born Infeld (EiBI) and Minimal Exponential Measure (MEMe) gravity. Retaining EiBI notation, we constrain the value of the coupling constant, , using a high-precision model-independent measurement of WD MR observations. We have demonstrated that the WD model should include detailed physics to achieve good precision. The model should include their temperature and evolutionary aspects, which may be computationally expensive. To overcome this issue, we construct a semi-analytical surrogate model based on Mestel’s model, calibrated with tabulated, detailed realistic models, to correct the zero-temperature radius. We have shown that the best-fit value of
depends on the WD model, with the ’thick’ envelope models more consistent in describing data. The tightest bound obtained from the most precise MR measurement, QS Vir, with
0.22 in
m
kg
s
for
credibility. Overall, we assert that the recent precise WD MR measurements, combined with our current understanding of WD structure, are insufficient to see the deviation from the one predicted by GR. Both more precise observation data and detailed WD modelling are required to rule out gravity modification.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.