https://doi.org/10.1140/epjc/s10052-023-11550-7
Regular Article - Theoretical Physics
Greybody factors emitted by a regular black hole in a non-minimally coupled Einstein–Yang–Mills theory
Department of Physics, Al-Hussein Bin Talal University, P. O. Box: 20, 71111, Ma’an, Jordan
Received:
22
February
2023
Accepted:
24
April
2023
Published online:
8
May
2023
In this paper, we study the greybody factors (GFs) for fermions with different spins and bosons in the regular black hole (BH) predicted by a non-minimal Einstein–Yang–Mills (EYM) theory. We investigate the effect of magnetic charge on effective potentials and GFs. For this purpose, we consider the Dirac and Rarita–Schwinger, as well as Klein–Gordon equations. First, we study the Dirac equation in curved spacetime for massive and massless spin-1/2 fermions. We then separate the Dirac equation into sets of radial and angular equations. Using the analytical solution of the angular equation, the Schrödinger-like wave equations with potentials are derived by decoupling the radial wave equations via the tortoise coordinate. We also consider the Rarita–Schwinger equation for massless spin-3/2 fermions and derive the one-dimensional Schrödinger wave equation with gauge-invariant effective potential. For bosons, we study the Klein–Gordon equation in the regular non-minimal EYM BH. Afterward, semi-analytic methods were used to calculate the fermionic and bosonic GFs. Finally, we discuss the graphical behavior of the obtained effective potentials and bounds on the GFs. According to graphs, the GF is highly influenced by the potential’s shape, which is determined by the parameterization of the model. This is in line with quantum theory.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.