https://doi.org/10.1140/epjc/s10052-023-11422-0
Regular Article - Theoretical Physics
Spinor walls in five-dimensional warped spacetime
1
Institute of Theoretical Physics and Research Center of Gravitation, Lanzhou University, 730000, Lanzhou, China
2
Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, 730000, Lanzhou, China
3
Centre for Particle Theory, Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, UK
Received:
28
January
2023
Accepted:
19
March
2023
Published online:
4
April
2023
We study domain wall solutions of a real spinor field coupling with gravitation in five dimensions. We find that the nonlinear spinor field supports a class of soliton configurations which could be viewed as a wall embedded in five dimensions. We begin with an illuminating solution of the spinor field in the absence of gravitation. In a further investigation, we exhibit three sets of solutions of the spinor field with nonconstant curvature bulk spacetimes and three sets of solutions corresponding to three constant curvature bulk spacetimes. We demonstrate that some of these solutions in specific conditions have the energy density distributions of domain walls for the spinor field, where the scalar curvature is regular everywhere. Therefore, the configurations of these walls can be interpreted as spinor walls which are interesting spinor field realizations of domain walls. In order to investigate the stability of these spinor configurations, the linear perturbations are considered. The localization of the zero mode of tensor perturbation is also discussed.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.