https://doi.org/10.1140/epjc/s10052-023-11344-x
Regular Article - Theoretical Physics
Quantum entanglement for continuous variables sharing in an expanding spacetime
1
Department of Physics, Liaoning Normal University, 116029, Dalian, China
2
Department of Physics, Hunan Normal University, 410081, Changsha, China
Received:
23
November
2022
Accepted:
17
February
2023
Published online:
16
March
2023
Detecting the structure of spacetime with quantum technologies has always been one of the frontier topics of relativistic quantum information. Here, we analytically study the generation and redistribution of Gaussian entanglement of the scalar fields in an expanding spacetime. We consider a two-mode squeezed state via a Gaussian amplification channel that corresponds to the time-evolution of the state from the asymptotic past to the asymptotic future. Therefore, the dynamical entanglement of the Gaussian state in an expanding universe encodes historical information about the underlying spacetime structure, suggesting a promising application in observational cosmology. We find that quantum entanglement is more sensitive to the expansion rate than the expansion volume. According to the analysis of quantum entanglement, choosing the particles with the smaller momentum and the optimal mass is a better way to extract information about the expanding universe. These results can guide the simulation of the expanding universe in quantum systems.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.