https://doi.org/10.1140/epjc/s10052-023-11252-0
Regular Article - Theoretical Physics
Regularized stable Kerr black hole: cosmic censorships, shadow and quasi-normal modes
1
Indian Institute of Technology, 382355, Gandhinagar, Gujarat, India
2
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, 560089, Bangalore, India
Received:
29
November
2022
Accepted:
21
January
2023
Published online:
30
January
2023
Black hole solutions in general relativity come with pathologies such as singularity and mass inflation instability, which are believed to be cured by a yet-to-be-found quantum theory of gravity. Without such consistent description, one may model theory-agnostic phenomenological black holes that bypass the aforesaid issues. These so-called regular black holes are extensively studied in the literature using parameterized modifications over the black hole solutions of general relativity. However, since there exist several ways to model such black holes, it is important to study the consistency and viability of these solutions from both theoretical and observational perspectives. In this work, we consider a recently proposed model of regularized stable rotating black holes having two extra parameters in addition to the mass and spin of a Kerr solution. We start by computing their quasi-normal modes under scalar perturbation and investigate the impact of those additional parameters on black hole stability. In the second part, we study shadows of the central compact objects in and
modelled by these regularized black holes and obtain stringent bounds on the parameter space requiring consistency with Event Horizon Telescope observations.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.