https://doi.org/10.1140/epjc/s10052-023-11171-0
Regular Article - Theoretical Physics
Weyl covariance, second clock effect and proper time in theories of symmetric teleparallel gravity
1
Department of Physics, Faculty of Science, Erciyes University, 38280, Kayseri, Turkey
2
Department of Physics, Faculty of Science, Pamukkale University, 20017, Denizli, Turkey
Received:
30
June
2022
Accepted:
26
December
2022
Published online:
13
January
2023
Just after Weyl’s paper (Weyl in Gravitation und Elektrizität, Sitzungsber. Preuss. Akad., Berlin, 1918) Einstein claimed that a gravity model written in a spacetime geometry with non-metricity suffers from a phenomenon, the so-called second clock effect. We give a new prescription of parallel transport of a vector tangent to a curve which is invariant under both of local general coordinate and Weyl transformations in order to remove that effect. Thus since the length of tangent vector does not change during parallel transport along a closed curve in spacetimes with non-metricity, a second clock effect does not appear in general, not only for the integrable Weyl spacetime. We have specially motivated the problem from the point of view of symmetric teleparallel (or Minkowski–Weyl) geometry. We also conclude that if nature respects Lorentz symmetry and Weyl symmetry, then the simplest geometry in which one can develop consistently alternative gravity models is the symmetric teleparallel geometry; . Accordingly we discuss the proper time, the orbit equation of a spinless test body and the Lagrangian for symmetric teleparallel gravity.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.