https://doi.org/10.1140/epjc/s10052-022-11123-0
Regular Article - Theoretical Physics
Gliner vacuum, self-consistent theory of Ruppeiner geometry for regular black holes
1
School of Physics, Nankai University, 94 Weijin Road, 300071, Tianjin, China
2
Department of Physics, Yantai University, 30 Qingquan Road, 264005, Yantai, China
Received:
9
October
2021
Accepted:
11
December
2022
Published online:
20
December
2022
In the view of the Gliner vacuum, we remove the deformations in the first law of mechanics for regular black holes, where one part of deformations associated with black hole mass will be absorbed into enthalpy or internal energy, and the other part associated with parameters rather than mass will constitute a natural V–P term. The improved first law of mechanics redisplays its resemblance to the first law of thermodynamic systems, which implies a restored correspondence of the mechanic variables to the thermodynamic ones. In particular, the linear relation between the entropy and horizon area remains unchanged for regular black holes. Based on the modified first law of thermodynamics, we establish a self-consistent theory of Ruppeiner geometry and obtain a universal attractive property for the microstructure of regular black holes. In addition, the repulsive and attractive interactions inside and outside regular black holes are analyzed in detail.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.