https://doi.org/10.1140/epjc/s10052-022-11032-2
Regular Article - Theoretical Physics
Doubly-polarized WZ hadronic production at NLO QCD+EW: calculation method and further results
1
Faculty of Fundamental Sciences, Phenikaa University, 12116, Hanoi, Vietnam
2
Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland
a
ninh.leduc@phenikaa-uni.edu.vn
Received:
22
August
2022
Accepted:
12
November
2022
Published online:
7
December
2022
The doubly-polarized production of pairs at the Large Hadron Collider (LHC) is presented at next-to-leading order (NLO) accuracy both for the electroweak (EW) and QCD corrections, including a detailed description of the calculational method using the double-pole approximation. Numerical results at the 13 TeV LHC are presented in particular for the
case in the
channel using ATLAS fiducial cuts and for polarized distributions defined in the WZ center-of-mass system. The NLO EW corrections relative to the NLO QCD predictions are found to be smaller than 5% in most kinematic distributions, but can reach the level of 10% in some distributions such as lepton transverse momentum distributions or rapidity separation between the electron and the Z boson. EW corrections are not uniform for different polarizations. A comparison between the new ATLAS measurement of polarization fractions to our theoretical prediction is presented.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.