https://doi.org/10.1140/epjc/s10052-022-10902-z
Regular Article - Theoretical Physics
Neutrino flavor oscillations in a rotating spacetime
Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, PO 140306, Sector 81 SAS Nagar, Manauli, Punjab, India
a himanshuswami@iisermohali.ac.in, ph16084@iisermohali.ac.in
Received:
24
June
2022
Accepted:
10
October
2022
Published online:
31
October
2022
We study neutrino oscillations in a rotating spacetime under the weak gravity limit for the trajectories of neutrinos which are constrained in the equatorial plane. Using the asymptotic form of the Kerr metric, we show that the rotation of the gravitational source non-trivially modifies the neutrino phase. We find that the oscillation probabilities deviate significantly from the corresponding results in the Schwarzschild spacetime when neutrinos are produced near the black hole (still in the weak-gravity limit) with non-zero angular momentum and detected on the same side, i.e., the non-lensed neutrino. Moreover, for a given gravitational body and geometric parameters, there exists a distance scale for every energy scale (and vice versa), after which the rotational contribution in the neutrino phase becomes significant. Using the sun-sized gravitational body in the numerical analysis of the one-sided neutrino propagation, we show that even a small rotation of the gravitational object can significantly change the survival or appearance events of a neutrino flavor registered by the detector, which is located on the earth. These effects are expected to be prominent for cosmological/astrophysical scenarios where neutrinos travel past by many (rotating) gravitational bodies and for large distances. Thus rotational effects of all such bodies must be incorporated in analyzing oscillations data.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.