https://doi.org/10.1140/epjc/s10052-022-10838-4
Editorial
Editorial: New frontiers in holographic duality
From quantum complexity and black holes to hydrodynamics and neutron stars
Center for Strings, Gravitation and Cosmology, Indian Institute of Technology Madras, 600 036, Chennai, India
Received:
6
September
2022
Accepted:
23
September
2022
Published online:
5
October
2022
Over the last 25 years, holographic duality has revolutionised our understanding of gauge theories, quantum many-body systems and also quantum black holes. This topical issue is a collection of review articles on recent advances in fundamentals of holographic duality and its applications with special focus on a few areas where it is inter-disciplinary to a large measure. The aim is to provide a sufficient background on relevant phenomenology and other theoretical areas such as quantum information theory to researchers whose primary expertise is in quantum fields, strings and gravity, and also the necessary concepts and methods of holography to researchers in other fields, so that these recent developments could be grasped and hopefully further developed by a wider community. The topics relating to fundamental aspects include understanding of bulk spacetime reconstruction in holography in the framework of quantum error correction along with the spectacular advances in resolution of the information paradoxes of quantum black holes; quantum complexity and its fundamental role in connecting holography with quantum information theory; theoretical and experimental advances in quantum simulators for information mirroring and scrambling in quantum black holes, and teleportation via wormholes; and a pedagogical review on wormholes also. The topics related to applied holography include applications to hydrodynamic attractor and its phenomenological implications, modelling of equation of state of QCD matter in neutron stars, and finally estimating hadronic contribution to light-by-light scattering for theoretical computation of the muon’s .
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.