https://doi.org/10.1140/epjc/s10052-022-10767-2
Regular Article - Theoretical Physics
On finite time singularities in scalar field dark energy models based in the RS-II Braneworld
1
School of Arts and Sciences, Ahmedabad Univeristy, 380009, Ahmedabad, India
2
Institute of Physics, Southern Federal University, Stachki 194, 344090, Rostov on Don, Russia
3
Virtual Institute of Astroparticle physics, 75018, Paris, France
4
National Research Nuclear University “MEPHI”, 115409, Moscow, Russia
Received:
21
August
2022
Accepted:
30
August
2022
Published online:
7
September
2022
The quest of deciphering the true nature of dark energy has proven to be one of the most exciting in recent times in cosmology. Various ideas have been put forward in this regard besides the usual cosmological constant approach, ranging from scalar field based models like Quintessence and Phantom dark energy to various modified gravity approaches as well. A very interesting idea then is to consider scalar field dark energy models in quantum gravitationally corrected cosmologies with the RS-II Braneworld being one of the most well known in this regard. So in this work, we consider RS-II Braneworld based scalar field dark energy models and try to look out for the existence of finite time singularities in these regimes both through a dynamical system perspective, for which we employ the Goriely–Hyde singularity analysis method, and a physical perspective. Our approach is general in the sense that it is not limited to any particular class of potentials or for any constrained parameter region for the brane tension and is valid for both Quintessence and phantom dark energy regimes. We firstly show through Goriely–Hyde procedure that finite time singularities can exist in these models for a limited set of initial conditions and that this result would hold irrespective of any consideration given to the swampland dS conjecture. We then discuss the physical nature of the singularities that can occur in this regime, where we use a well motivated ansatz for the Hubble parameter and show that these models of dark energy can allow for weak singularities like those of Type III and Type IV and can also allow for strong singularities like the Big Rip (Type I).
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.