https://doi.org/10.1140/epjc/s10052-022-10669-3
Regular Article - Theoretical Physics
Model-independent approach to effective sound speed in multi-field inflation
1
Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland
2
ICRANet, Piazza della Repubblica 10, 65122, Pescara, Italy
3
Instituto de Fisica, Universidad de Antioquia, A.A.1226, Medellin, Colombia
4
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
Received:
31
December
2021
Accepted:
3
August
2022
Published online:
30
August
2022
For any physical system satisfying the Einstein’s equations, the comoving curvature perturbations satisfy an equation involving the momentum-dependent effective sound speed, valid for any system with a well defined energy-stress tensor, including multi-fields models of inflation. We derive a general model-independent formula for the effective sound speed of comoving adiabatic perturbations, valid for a generic field-space metric, without assuming any approximation to integrate out entropy perturbations, but expressing the momentum-dependent effective sound speed in terms of the components of the total energy-stress tensor. As an application, we study a number of two-field models with a kinetic coupling between the fields, identifying the single curvature mode of the effective theory and showing that momentum-dependent effective sound speed fully accounts for the predictions for the power spectrum of curvature perturbations. Our results show that the momentum-dependent effective sound speed is a convenient scheme for describing all inflationary models that admit a single-field effective theory, including the effects of entropy pertubations present in multi-fields systems.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.