https://doi.org/10.1140/epjc/s10052-022-10615-3
Regular Article - Experimental Physics
Pair-production of the charged IDM scalars at high energy CLIC
Faculty of Physics, University of Warsaw, Warsaw, Poland
Received:
2
February
2022
Accepted:
16
July
2022
Published online:
23
August
2022
The Inert Doublet Model (IDM) is a simple extension of the Standard Model, introducing an additional Higgs doublet that brings in four new scalar particles. The lightest of the IDM scalars is stable and is a good candidate for a dark matter particle. The potential of discovering the IDM scalars in the experiment at the Compact Linear Collider (CLIC), an collider proposed as the next generation infrastructure at CERN, has been tested for two high-energy running stages, at 1.5 TeV and 3 TeV centre-of-mass energy. The CLIC sensitivity to pair-production of the charged IDM scalars was studied using the full detector simulation with Geant4 for selected high-mass IDM benchmark scenarios and the semi-leptonic final state. To extrapolate full simulation results to a wider range of IDM benchmark scenarios, the CLIC detector model defined in the Delphes fast simulation framework was modified to take into account the had. beam-induced background. Results of the study indicate that heavy charged IDM scalars can be discovered at CLIC for most of the considered benchmark scenarios, up to masses of the order of 1 TeV.
This work was carried out in the framework of the CLICdp Collaboration.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.