https://doi.org/10.1140/epjc/s10052-022-10612-6
Regular Article - Theoretical Physics
Parametrized black holes: scattering investigation
1
Programa de Pós-Graduação em Física, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
2
Campus Altamira, Instituto Federal do Pará, 68377-630, Altamira, Pará, Brazil
a
renan.magalhaes@icen.ufpa.br
Received:
11
May
2022
Accepted:
15
July
2022
Published online:
12
August
2022
We study the scattering of light-like geodesics and massless scalar waves by a static Konoplya–Zhidenko black hole, considering the case that the parametrized black hole solution contains a single deformation parameter. By performing a geodesic analysis, we compute the classical differential scattering cross section and probe the influence of the deformation parameter on null trajectories. Moreover, we investigate the propagation of a massless scalar field in the vicinity of the static Konoplya–Zhidenko black hole and use the plane waves formalism to compute the differential scattering cross section. We confront our numerical results in the backward direction with the glory approximation, finding excellent agreement. We compare the results for the deformed black hole with the Schwarzschild case, finding that the additional parameter has an important role in the behavior of the scattering process for moderate-to-high scattering angles.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.