https://doi.org/10.1140/epjc/s10052-022-10575-8
Regular Article - Theoretical Physics
Light-cone quantization of scalar field on time-dependent backgrounds
Dipartimento di Fisica, Università di Torino and I.N.F.N.-Sezione di Torino, Via P. Giuria 1, 10125, Turin, Italy
Received:
31
March
2022
Accepted:
3
July
2022
Published online:
26
July
2022
We discuss what is light-cone quantization on a curved spacetime also without a null Killing vector. Then we consider as an example the light-cone quantization of a scalar field on a background with a Killing vector and the connection with the second quantization of the particle in the same background. It turns out that the proper way to define the light-cone quantization is to require that the constant light-cone time hypersurface is null or, equivalently, that the particle Hamiltonian is free of square roots. Moreover, in order to quantize the scalar theory it is necessary to use not the original scalar rather a scalar field density, i.e. the Schrödinger wave functional depends on a scalar density and not on the original field. Finally we recover this result as the second quantization of a particle on the same background, where it is necessary to add as input the fact that we are dealing with a scalar density.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.