https://doi.org/10.1140/epjc/s10052-022-10534-3
Regular Article -Theoretical Physics
Sensitivity of direct detection experiments to neutrino dark radiation from dark matter decay and a modified neutrino-floor
1
Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050, Vienna, Austria
2
Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010, Graz, Austria
Received:
14
October
2021
Accepted:
19
June
2022
Published online:
27
July
2022
In this work we analyse the ultimate sensitivity of dark matter direct detection experiments to dark radiation in form of SM or semi-sterile neutrinos. This flux-component is assumed to be produced from dark matter decay. Since dark radiation may mimic dark matter signals, we perform our analysis based on likelihood statistics that allows to test the distinguishability between signals and backgrounds. Given the previous bounds from neutrino experiments, we find that xenon-based dark matter searches will not be able to probe new regions of the dark matter progenitor mass and lifetime parameter space when the decay products are SM neutrinos. In turn, if the decay instead happens to a fourth neutrino species with enhanced interactions to baryons, DR can either constitute the dominant background or a discoverable signal in direct detection experiments. In the former case, this lifts the “neutrino floor” for xenon-based experiments.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.