https://doi.org/10.1140/epjc/s10052-022-10438-2
Regular Article - Theoretical Physics
Scrambling time for analogue black holes embedded in AdS space
Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China
Received:
11
March
2022
Accepted:
15
May
2022
Published online:
21
May
2022
We propose a gedanken experiment on realizing thermofield double state (TFD) by using analog black holes and provide an approach to test the scrambling time. Through this approach, we demonstrate clearly how shock wave changes the TFD state as time evolves. As the whole system evolves forward in time, the perturbation of space-time geometry will increase exponentially. Finally, it will destroy the entanglement between the two states of the thermal field, and the mutual information between them is reduced to zero in the time scale of scrambling. The results show that for perturbations of analogue black holes embedded in AdS space, the scale of the scrambling time is closely related to the logarithm of entropy of the black hole. The results provide further theoretical argument for the scrambling time, which can be further falsified in experiments.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3