https://doi.org/10.1140/epjc/s10052-022-10383-0
Regular Article - Experimental Physics
R &D of wavelength-shifting reflectors and characterization of the quantum efficiency of tetraphenyl butadiene and polyethylene naphthalate in liquid argon
1
Department of Physics, Physik-Institut, Universität Zürich, 8057, Zurich, Switzerland
2
Physik Department, Technische Universität München, 85748, Munich, Germany
Received:
14
December
2021
Accepted:
2
May
2022
Published online:
13
May
2022
Detectors based on liquid argon (LAr) often require surfaces that can shift vacuum ultraviolet (VUV) light and reflect the visible shifted light. For the LAr instrumentation of the LEGEND-200 neutrinoless double beta decay experiment, several square meters of wavelength-shifting reflectors (WLSR) were prepared: the reflector Tetratex® (TTX) was in-situ evaporated with the wavelength shifter tetraphenyl butadiene (TPB). For even larger detectors, TPB evaporation will be more challenging and plastic films of polyethylene naphthalate (PEN) are considered as an option to ease scalability. In this work, we first characterized the absorption (and reflectivity) of PEN, TPB (and TTX) films in response to visible light. We then measured TPB and PEN coupled to TTX in a LAr setup equipped with a VUV sensitive photomultiplier tube. The effective VUV photon yield in the setup was first measured using an absorbing reference sample, and the VUV reflectivity of TTX quantified. The characterization and simulation of the setup along with the measurements and modelling of the optical parameters of TPB, PEN and TTX allowed to estimate the absolute quantum efficiency (QE) of TPB and PEN in LAr (at 87K) for the first time: these were found to be above 67 and 49%, respectively (at 90% CL). These results provide relevant input for the optical simulations of experiments that use TPB in LAr, such as LEGEND-200, and for experiments that plan to use TPB or PEN to shift VUV scintillation light.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3