https://doi.org/10.1140/epjc/s10052-022-10251-x
Regular Article - Theoretical Physics
Black hole thermodynamics in (
)-dimensional scalar–tensor-Born–Infeld theory
Department of Physics, Razi University, Kermanshah, Iran
Received:
18
August
2021
Accepted:
24
March
2022
Published online:
26
April
2022
The action of scalar–tensor (ST) gravity theory can be written in both of the Jordan and Einstein frames, which are related via conformal transformations. Here, by introducing a suitable conformal transformation (CT), the action of three-dimensional Einstein-dilaton-Born–Infeld (EdBI) gravity has been obtained from that of scalar–tensor-Born–Infeld (STBI) theory. Despite the field equations of ST gravity, the exact solutions of Einstein-dilaton (Ed) theory can be obtained, easily. The exact solutions of STBI theory have been obtained from those of EdBI gravity by applying the inverse CTs. As the result, two novel classes of ST black hole (BH) solutions have been introduced in the presence of Born–Infeld (BI) nonlinear electrodynamics. The BHs’ conserved and thermodynamic quantities have been calculated under the influence of nonlinear electrodynamics. Then, through a Smarr-type mass formula, it has been shown that these quantities satisfy the standard form of the thermodynamical first law, in both of the Jordan and Einstein frames. Thermal stability or phase transition of the BHs have been investigate by use of the canonical ensemble method and regarding the signature of specific heat (SH). The points of first- and second-order phase transitions, and the size of those BHs which remain locally stable have been determined.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3