https://doi.org/10.1140/epjc/s10052-022-09985-5
Regular Article - Theoretical Physics
Curing tachyonic tree-level syndrome in NMSSM light-singlet scenarios
1
Bethe Center for Theoretical Physics and Physikalisches, Institut der Universität Bonn, Nußallee 12, 53115, Bonn, Germany
2
Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Sommerfeldstraße 16, 52074, Aachen, Germany
b
passehr@physik.rwth-aachen.de
Received:
24
September
2021
Accepted:
1
January
2022
Published online:
1
February
2022
Models with an extended Higgs sector open up the phenomenological possibility of additional scalars, beyond the SM-like boson observed by the LHC, with mass at or below the electroweak scale. Such scenarios are in particular viable in the presence of electroweak-singlet spin-0 fields, as expected for instance in the context of the NMSSM. Given that the size of radiative corrections can substantially affect the Higgs potential, a negative squared mass at the tree level does not necessarily yield a tachyonic spectrum at the physical level, but only indicates a failure of the tree-level description for calculational purposes. We explain how to tackle this technical issue in the example of the NMSSM, in scenarios with light -odd or
-even singlet-dominated states and show how loop corrections to the Higgs masses and decay widths can be derived with the regularized Lagrangian. We further explore how the same flexibility in the definition of tree-level parameters can be exploited to circumvent large deviations of the tree-level spectrum from the kinematical setup in Higgs decays, or to estimate the theoretical uncertainty associated with the discrepancy between tree-level and physical Higgs spectra. The latter is of particular relevance for the properties of the SM-like Higgs boson in supersymmetry-inspired models.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3