https://doi.org/10.1140/epjc/s10052-022-10018-4
Regular Article - Theoretical Physics
Peccei–Quinn symmetry breaking via asymptotically safe dynamical scalegenesis: a walking axicolor and axion
1
Theory Center, IPNS, KEK, 305-0801, Tsukuba, Ibaraki, Japan
2
Center for Liberal Arts and Sciences, Toyama Prefectural University, 939-0398, Toyama, Japan
3
Center for Theoretical Physics and College of Physics, Jilin University, 130012, Changchun, China
4
Department of Physics, Brown University, 02912, Providence, RI, USA
Received:
25
November
2021
Accepted:
10
January
2022
Published online:
3
February
2022
Breaking the Pecci–Quinn (PQ) symmetry by the perturbative dynamics would suffer from a hierarchy problem, just like the electroweak symmetry breaking in the standard model. The dynamics of the axion, associated with the PQ symmetry breaking, would also involve a triviality problem. We provide a paradigm to resolve those two problems potentially existing in the PQ symmetry breaking scenario, with keeping the successful axion relaxation for the QCD strong CP phase. The proposed theory includes an axicolor dynamics with the axicolored fermions partially gauged by the QCD color, and is shown to be governed by an asymptotically safe (AS) fixed point: quantum scale invariance is built. The AS axicolor is actually a “walking” dynamics, which dynamically breaks a PQ symmetry, a part of the chiral symmetry carried by the axicolored fermions. The PQ scale generation is then triggered by the nonperturbative dimensional transmutation in the “walking” dynamics. A composite axion emerges as the associated Nambu-Goldstone boson. That is, no hierarchy or triviality problem is present there. The composite axion can potentially be light due to the characteristic feature of the AS axicolor (“walking” axicolor), becomes the QCD axion in the anti-Veneziano limit, and gets heavier by the subleading correction. The composite axion relaxes the QCD theta parameter, involving heavier relaxation partners such as axicolored pseudoscalar mesons, and the ultraviolet correction to the relaxation mechanism is protected by the established (near) scale invariance during the “walking” regime.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3