https://doi.org/10.1140/epjc/s10052-022-09999-z
Regular Article - Theoretical Physics
Thermoelectric transport coefficients of quark matter
1
Theory Division, Physical Research Laboratory, Navrangpura, 380 009, Ahmedabad, India
2
Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
3
Indian Institute of Technology Gandhinagar, 382 355, Gandhinagar, Gujarat, India
Received:
6
May
2021
Accepted:
6
January
2022
Published online:
24
January
2022
A thermal gradient and/or a chemical potential gradient in a conducting medium can lead to an electric field, an effect known as thermoelectric effect or Seebeck effect. In the context of heavy-ion collisions, we estimate the thermoelectric transport coefficients for quark matter within the ambit of the Nambu–Jona Lasinio (NJL) model. We estimate the thermal conductivity, electrical conductivity, and the Seebeck coefficient of hot and dense quark matter. These coefficients are calculated using the relativistic Boltzmann transport equation within relaxation time approximation. The relaxation times for the quarks are estimated from the quark–quark and quark–antiquark scattering through meson exchange within the NJL model. As a comparison to the NJL model estimation of the Seebeck coefficient, we also estimate the Seebeck coefficient within a quasiparticle approach.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3