https://doi.org/10.1140/epjc/s10052-022-10025-5
Regular Article - Theoretical Physics
Direct photons emission rate and electric conductivity in twice anisotropic QGP holographic model with first-order phase transition
Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina Str. 8, 119991, Moscow, Russia
Received:
9
September
2021
Accepted:
13
January
2022
Published online:
28
January
2022
The electric conductivity and direct photons emission rate are considered in the holographic theory with two types of anisotropy. The electric conductivity is derived in two different ways, and their equivalence for the twice anisotropic theory is shown. Numerical calculations of the electric conductivity were done for Einstein-dilaton-three-Maxwell holographic model (Aref’eva et al. in JHEP 07:161, 2021). The dependence of the conductivity on the temperature, the chemical potential, the external magnetic field, and the spatial anisotropy of the heavy-ions collision (HIC) is studied. The electric conductivity jumps near the first-order phase transition are observed. This effect is similar to the jumps of holographic entanglement that were studied previously.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3