https://doi.org/10.1140/epjc/s10052-021-09884-1
Regular Article - Theoretical Physics
Quasinormal modes of a massive scalar field nonminimally coupled to gravity in the spacetime of self-dual black hole
1
Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58429-900, Campina Grande, Paraíba, Brazil
2
Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, Paraíba, Brazil
Received:
20
July
2021
Accepted:
28
November
2021
Published online:
8
December
2021
In this work, we investigate the quasinormal modes for a massive scalar field with a nonminimal coupling with gravity in the spacetime of a loop quantum black hole, known as the self-dual black hole. In this way, we have calculated the characteristic frequencies using the 3rd order WKB approach, where we can verify a strong dependence with the mass of scalar field, the parameter of nonminimal coupling with gravity, and parameters of the loop quantum gravity. From our results, we can check that the self-dual black hole is stable under the scalar perturbations when assuming small values for the parameters. Also, such results tell us that the quasinormal modes assume different values for the cases where the mass of field is null and the nonminimal coupling assumes and
, i.e., a possible breaking of the conformal invariance can be seen in the context of loop quantum black holes.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3