https://doi.org/10.1140/epjc/s10052-021-09826-x
Regular Article - Theoretical Physics
Phase transitions in the logarithmic Maxwell O(3)-sigma model
Department of Physics, Universidade Federal do Ceará, C.P. 6030, Campus do Pici, 60455-760, Fortaleza, CE, Brazil
Received:
15
June
2021
Accepted:
14
November
2021
Published online:
29
November
2021
We investigate the presence of topological structures and multiple phase transitions in the O(3)-sigma model with the gauge field governed by Maxwell’s term and subject to a so-called Gausson’s self-dual potential. To carry out this study, it is numerically shown that this model supports topological solutions in 3-dimensional spacetime. In fact, to obtain the topological solutions, we assume a spherically symmetrical ansatz to find the solutions, as well as some physical behaviors of the vortex, as energy and magnetic field. It is presented a planar view of the magnetic field as an interesting configuration of a ring-like profile. To calculate the differential configurational complexity (DCC) of structures, the spatial energy density of the vortex is used. In fact, the DCC is important because it provides us with information about the possible phase transitions associated with the structures located in the Maxwell–Gausson model in 3D. Finally, we note from the DCC profile an infinite set of kink-like solutions associated with the parameter that controls the vacuum expectation value.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3