https://doi.org/10.1140/epjc/s10052-021-09804-3
Regular Article - Theoretical Physics
Gravastars in a non-minimally coupled gravity with electromagnetism
Department of Physics, Faculty of Arts and Sciences, Pamukkale University, Kınıklı, 20070, Denizli, Turkey
Received:
22
October
2021
Accepted:
2
November
2021
Published online:
15
November
2021
In this paper we investigate the gravitational vacuum stars which called gravastars in the non-minimally coupled models with electromagnetic and gravitational fields. We consider two non-minimal models and find the corresponding spherically symmetric exact solutions in the interior of the star consisting of the dark energy condensate. Our models turn out to be Einstein–Maxwell model at the outside of the star and the solutions become the Reissner–Nordström solution. The physical quantities of these models are continuous and non-singular in some range of parameters and the exterior geometry continuously matches with the interior geometry at the surface. We calculate the matter mass, the total gravitational mass, the electric charge and redshift of the star for the two models. We notice that these quantities except redshift are dependent of a subtle free parameter, k, of the model. We also remark a wide redshift range from zero to infinity depending on one free parameter, , in the second model.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3