https://doi.org/10.1140/epjc/s10052-021-09788-0
Regular Article - Theoretical Physics
Holographic entanglement entropy and modular Hamiltonian in warped CFT in the framework of GMMG model
Department of Science, Campus of Bijar, University of Kurdistan, Bijar, Iran
Received:
26
July
2021
Accepted:
29
October
2021
Published online:
14
November
2021
We study some aspects of a class of non-AdS holography where the 3D bulk gravity is given by generalized minimal massive gravity (GMMG). We consider the spacelike warped (
) black hole solution of this model where the 2d dual boundary theory is the warped conformal field theory (WFCT). The charge algebra of the isometries in the bulk and the charge algebra of the vacuum symmetries at the boundary are compatible and this is an evidence for the duality conjecture. Further evidence for this duality is the equality of entanglement entropy and modular Hamiltonian on both sides of the duality. So we consider the modular Hamiltonian for the single interval at the boundary in associated to the modular flow generators of the vacuum. We calculate the gravitational charge in associated to the asymptotic Killing vectors that preserve the metric boundary conditions. Assuming the first law of the entanglement entropy to be true, we introduce the matching conditions between the variables in two side of the duality and we find equality of the modular Hamiltonian variations and the gravitational charge variations in two sides of the duality. According to the results of the present paper we can say with more sure that the dual theory of the warped AdS3 black hole solution of GMMG is a Warped CFT.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3