https://doi.org/10.1140/epjc/s10052-021-09770-w
Regular Article - Experimental Physics
Model compression and simplification pipelines for fast deep neural network inference in FPGAs in HEP
1
Department of Physics, Sapienza University and INFN Sezione di Roma, 00185, Rome, Italy
2
Department of Physics, Harvard University, 02138, Cambridge, MA, USA
3
Department of Physics, ETH Zürich, 8092, Zurich, Switzerland
Received:
22
June
2021
Accepted:
22
October
2021
Published online:
3
November
2021
Resource utilization plays a crucial role for successful implementation of fast real-time inference for deep neural networks (DNNs) and convolutional neural networks (CNNs) on latest generation of hardware accelerators (FPGAs, SoCs, ACAPs, GPUs). To fulfil the needs of the triggers that are in development for the upgraded LHC detectors, we have developed a multi-stage compression approach based on conventional compression strategies (pruning and quantization) to reduce the memory footprint of the model and knowledge transfer techniques, crucial to streamline the DNNs simplifying the synthesis phase in the FPGA firmware and improving explainability. We present the developed methodologies and the results of the implementation in a working engineering pipeline used as pre-processing stage to high level synthesis tools (HLS4ML, Xilinx Vivado HLS, etc.). We show how it is possible to build ultra-light deep neural networks in practice, by applying the method to a realistic HEP use-case: a toy simulation of one of the triggers planned for the HL-LHC.
© The Author(s) 2021. corrected publication 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3