https://doi.org/10.1140/epjc/s10052-021-09581-z
Regular Article - Theoretical Physics
Realize Emergent Gravity to Generic Situations
1
Institute for Theoretical Physics & Cosmology, Zhejiang University of Technology, 310023, Hangzhou, China
2
Institute for Theoretical Physics, University of Amsterdam, 1090 GL, Amsterdam, Netherlands
a
anyangpeacefulocean@zju.edu.cn
Received:
2
March
2021
Accepted:
22
August
2021
Published online:
6
September
2021
We clarify the problem in which occasions can gravitational force be regarded emergent from thermodynamics, by proposing an entropic mechanism that can extract the entropic gradient existing in spacetime, due to the variation of the Casini–Bekenstein bound in specific quasi-static processes with the heat flux into the whole casual wedge. We explicitly formulate the derivation of inertial force as the emergent gravitational attraction from the Entanglement First Law. We find the saturation of the bound along with the vanishing relative entropy corresponds to the variation of minimal surface. To covariant meaning, it is the Bousso bound. Besides, this understanding is connected to recent Pennington’s work on Black Hole Information Paradox, suggesting a Page-Curve function origins from removing attraction by the external heat bath. Our theory from entanglement now overcomes several criticism towards Verlinde’s original entropic force proposal, and is able to co-exist with Susskind’s Complexity Tendency. This entropic mechanism reproduces the Newton’s Second Law in Rindler space and the gravitational force (together with derivation of the Einstein equation) beyond the near-horizon region, and can be adapted into AdS/CFT and other generic situations.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3