https://doi.org/10.1140/epjc/s10052-021-09539-1
Regular Article - Theoretical Physics
Soft photon radiation and entanglement
1
Department of Physics, University of Cyprus, 1678, Nicosia, Cyprus
2
ITCP and Department of Physics, University of Crete, 700 13, Heraklion, Greece
Received:
7
June
2021
Accepted:
7
August
2021
Published online:
18
August
2021
We study the entanglement between soft and hard particles produced in generic scattering processes in QED. The reduced density matrix for the hard particles, obtained via tracing over the entire spectrum of soft photons, is shown to have a large eigenvalue, which governs the behavior of the Renyi entropies and of the non-analytic part of the entanglement entropy at low orders in perturbation theory. The leading perturbative entanglement entropy is logarithmically IR divergent. The coefficient of the IR divergence exhibits certain universality properties, irrespectively of the dressing of the asymptotic charged particles and the detailed properties of the initial state. In a certain kinematical limit, the coefficient is proportional to the cusp anomalous dimension in QED. For Fock basis computations associated with two-electron scattering, we derive an exact expression for the large eigenvalue of the density matrix in terms of hard scattering amplitudes, which is valid at any finite order in perturbation theory. As a result, the IR logarithmic divergences appearing in the expressions for the Renyi and entanglement entropies persist at any finite order of the perturbative expansion. To all orders, however, the IR logarithmic divergences exponentiate, rendering the large eigenvalue of the density matrix IR finite. The all-orders Renyi entropies (per unit time, per particle flux), which are shown to be proportional to the total inclusive cross-section in the initial state, are also free of IR divergences. The entanglement entropy, on the other hand, retains non-analytic, logarithmic behavior with respect to the size of the box (which provides the IR cutoff) even to all orders in perturbation theory.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3