https://doi.org/10.1140/epjc/s10052-021-09384-2
Regular Article - Theoretical Physics
Hunting BFKL in semi-hard reactions at the LHC
1
Dipartimento di Fisica, Università degli Studi di Pavia, 27100, Pavia, Italy
2
INFN, Sezione di Pavia, 27100, Pavia, Italy
3
European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), 38123, Villazzano, Trento, Italy
4
Fondazione Bruno Kessler (FBK), 38123, Povo, Trento, Italy
a
francescogiovanni.celiberto@unipv.it
Received:
17
December
2020
Accepted:
25
June
2021
Published online:
4
August
2021
The agreement between calculations inspired by the resummation of energy logarithms, known as BFKL approach, and experimental data in the semi-hard sector of QCD has become manifest after a wealthy series of phenomenological analyses. However, the contingency that the same data could be concurrently portrayed at the hand of fixed-order, DGLAP-based calculations, has been pointed out recently, but not yet punctually addressed. Taking advantage of the richness of configurations gained by combining the acceptances of CMS and CASTOR detectors, we give results in the full next-to-leading logarithmic approximation of cross sections, azimuthal correlations and azimuthal distributions for three distinct semi-hard processes, each of them featuring a peculiar final-state exclusiveness. Then, making use of disjoint intervals for the transverse momenta of the emitted objects, i.e. -windows, we clearly highlight how high-energy resummed and fixed-order driven predictions for semi-hard sensitive observables can be decisively discriminated in the kinematic ranges typical of current and forthcoming analyses at the LHC. The scale-optimization issue is also introduced and explored, while the uncertainty coming from the use of different PDF and FF set is deservedly handled. Finally, a brief overview of JETHAD, a numerical tool recently developed, suited for the computation of inclusive semi-hard reactions is provided.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3