https://doi.org/10.1140/epjc/s10052-021-09400-5
Regular Article - Theoretical Physics
Tidal effects in 4D Einstein–Gauss–Bonnet black hole spacetime
1
Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081, Changsha, Hunan, People’s Republic of China
2
Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 225009, Yangzhou, People’s Republic of China
Received:
11
May
2021
Accepted:
30
June
2021
Published online:
7
July
2021
We have investigated tidal forces and geodesic deviation motion in the 4D-Einstein–Gauss–Bonnet spacetime. Our results show that tidal force and geodesic deviation motion depend sharply on the sign of Gauss–Bonnet coupling constant. Comparing with Schwarzschild spacetime, the strength of tidal force becomes stronger for the negative Gauss–Bonnet coupling constant, but is weaker for the positive one. Moreover, tidal force behaves like those in the Schwarzschild spacetime as the coupling constant is negative, and like those in Reissner–Nordström black hole as the constant is positive. We also present the change of geodesic deviation vector with Gauss–Bonnet coupling constant under two kinds of initial conditions.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3