https://doi.org/10.1140/epjc/s10052-021-09397-x
Regular Article - Theoretical Physics
Explaining Xenon-1T signal with FIMP dark matter and neutrino mass in a
extension
Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
a
sarif.khan@uni-goettingen.de
Received:
21
April
2021
Accepted:
29
June
2021
Published online:
9
July
2021
In the present work, we have extended the standard model by an abelian gauge group and additional particles. In particular, we have extended the particle content by three right handed neutrinos, two singlet scalars and two vectors like leptons. Charged assignments under different gauge groups are such that the model is gauge anomaly free and the anomaly contributions cancel among generations. Once the symmetry gets broken then three physical Higgses are produced, one axion like particle (ALP), which also acts as the keV scale FIMP dark matter is produced and the remaining component is absorbed by the extra gauge boson. Firstly, we have successfully generated neutrino mass by the type-I seesaw mechanism for normal hierarchy with the
bound on the oscillation parameters. The ALP in the present model can explain the Xenon-1T electron recoil signal at keV scale through its coupling with the electron. We have shown that ALP can be produced from the right handed neutrino decay through the freeze in mechanism. Electron and tauon get masses from dimensional-5 operators at the Planck scale and if we consider the vevs
GeV then we can obtain the correct value of the electron mass but not the tauon mass. The vector like leptons help in getting the correct value of the tauon mass through another higher dimensional operator which also has a role in DM production by the
process, giving the correct ballpark value of relic density for suitable reheat temperature of the Universe. We have shown that the ALP production by the higher dimensional operator can explain the electron, tauon mass and Xenon-1T signal simultaneously whereas the decay production can not explain all of them together.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3